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LE'ITER TO THE EDITOR 

On the structure of phase-space, Hamiltonian variables and 
statistical approach to the description of two-dimensional 
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Vladimir Zeitlin 
CNRS, ObseNatoire de Nice, BP139,06003 Nice Cedex, and 
Institute of Atmospheric Physics, Pyzhevsky 3, IO9017 Moscow, Russia 

Received 18 November 1991 

Abstract. The peculiarities of the Hamiltonian description of 213 hydrodynamics and 
magnetohydrodynamics are discussed in connection with recent attempts to construct a 
thermodynamical picture for 2~ turbulence. The unconstrained Hamiltonian variables are 
displayed in both cases and the role of topology of the flow in tentative statistical equilibria 
is discussed. As a by-product the Clebsch-type variables for 2D magnetohydrodynamics 
are obtained describing Rows with initial zero vorticity. 

The recent papers of Miller [ I ]  and Robert and Sommeria [2] revived an interest in 
the thermodynamical description of ZD turbulence. This approach has a long history 
starting from the classical work of Onsager [3] on statistics of point vortices (for a 

the dominant problem arising in statistics of continuous vorticity distributions within 
the Eulerian framework is how to properly take into account an infinity of integrals 
of motion in a partition function. On the intuitive level one expects something like an 
infinite product of Dirac delta-functions of conservation laws to be introduced into 
the Gibbs measure but it is hard to attribute an operational meaning to this idea. The 
papers [ I ,  21 contain interesting attempts to do  that based on  certain a priori statistical 
hypotheses. 

The standard way of introducing a statistical description for a dynamical system 
is to use a Hamiltonian formalism which allows one to build a statistical measure with 
the help of a Hamiltonian and a volume element o i  phase-space. So in this context it 
is worth trying to understand what are the peculiarities of a Hamiltonian description 
for a ZD fluid. It turns out that it is very far from the familiar picture of a flat phase-space 

;his ieiier io 
draw attention to this fact. The structure of a phase-space will be displayed and true 
(unconstrained) Hamiltonian variables will be demonstrated for both ZD hydro- 
dynamics (HD) and ZD magnetohydrodynamics (MHD) since historically the thermo- 
dynamical approach was exercised in parallel for these two systems (see [4]). 

review of the activity Qp !sRn see hJt!ifig aside a proof of ergodic$' ( i f  q), 

forr& by i.anonica; coordinaies an: iiioinenia an; is the PuTose 

We start with ZD HD written in the form of the vorticity equation 

W+.i(o,+j=u i o  
where o and I) are vorticity and stream-function respectively, o = AI) and J denotes 
the Jacobian. It is well known that an arbitrary function of vorticity integrated over 
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the domain 9 of the flow is conserved 

I ,  = jB F ( w )  d x  dy = constant 

H =  -f Is wll, dx dy. 

(2) 

which gives an infinite number of integrals of motion. The question of a Hamiltonian 
description of the dynamical system (1) is obviously non-trivial since we have a 
nonlinear equation of motion and a quadratic Hamiltonian kinetic energy of the fluid: 

(3 )  

The answer is given by a Poisson bracket 

which allows us to rewrite (1) in the standard Hamiltonian form 

&i = (0, H } .  

This Poisson bracket may be deduced from the underlying algebraic structure first 
pointed out by Arnold [ 151 and relating (1) to the Lie algebra of symplectic diffeomorph- 
isms of 9, sdiff 9. This latter may be realized as an algebra of infinitesimal transforma- 
tions of the form: 

Sw = J(x,  0 )  ( 5 )  

where x is an arbitrary smooth function in 9. This evidently corresponds to an 
infinitesimal area-preserving coordinate transformation 

(x. Y ) +  (X-xyrY+Xx). ( 6 )  

(x. Y )  + (X(X, Y ) ,  Y(X, Y ) )  (7) 

4X,Y)+4X(X,Y) ,  Y(X,Y)) J(X, Y) = 1. (8) 

Hence, the global version of this equation may be immediately written: 

J(X, Y) = 1 

giving in turn the global version of ( 5 )  

Equations ( 5 )  and (8) actually provide a co-adjoint representation of symplectic 
diffeomorphisms and (4) is a Kirillov bracket related to a Kirillov form (a condensed 
account of its theory may be found in [SI, see also [6 ] ) .  By construction this bracket 
is degenerate since any functional built of w ' s  and invariant under the group action 
(5) (a Casimir functional) annihilates the bracket identically. The integrals (2) are just 
of this geometric nature. 

dynamics only on a certain submanifold of the original linear space of w's. This 
manifold is a so-called co-adjoint orbit (see [7] for a discussion of co-adjoint orbits 
in a hydrodynamical context) and may be obtained starting from a sample vorticity 
pattern oo(x, y )  (which may be thought of, but not necessarily, as initial data for a 
Cauchy problem for (1)) and implementing all possible transformations (8). It is 
evident that integrals (2) remain constant under such changes of variable. In this way 
the space of original vorticity variables is foliated [7] into symplectic manifolds 
(phase-spaces)-co-adjoint orbits defined by their representatives wo.  These latter 
define in turn the values of Casimirs (2) fixed for the given orbit. All the points (vorticity 

The bracket (4) beta-es nnn=degexe:-'e and, hence, defixes !he :::e Ua=li!tonian 
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fields) on such a manifold may he transformed into one another by smooth area- 
preserving changes of variables, i.e. a point on each of these phase-spaces is given by 

(9) 
Vice versa, the points that cannot he connected by this symmetry transformation, e.g. 
those possessing different topological characteristics such as the structure of critical 
points, belong to the different phase-spaces. Parameters of the symmetry transforma- 
tions, modulo those leaving o,, invariant, provide natural coordinates for such a 
phase-space and are the true non-constrained Hamiltonian variables for 2~ ideal HD. 

Unfortunately, there is no explicit parametrization for an arbitrary symplectic 
diffeomorphism. However for those not so far from identity the generating function 
method may he used. Namely, the function S(x,  Y )  of old x- and new Y-coordinates 
may be intrdouced, such as 

Y )  = W O ( X ( X ,  Y ) ,  Y(X, y ) )  J ( X ,  Y )  = 1. 

as Y = y - - .  as 
ay ax 

x = x + -  

If the solvability conditions for Y as a function of x, y are satisfied, which is the case 
for the diffeomorphisms not very far from identity (a discussion of this point see e.g. 
in appendix 9 of [ 5 ] )  then (10) does define a diffeomorphism and a function S(x, y) 
provides its parametrization. Hence, those S which are functionally independent on 
oo are the true Hamiltonian variables in this case. 

Although the Hamiltonian variables just described seem rather far from being useful 
in practical calculations we can nevertheless draw with their help some conclusions 
about hypothetical thermodynamical equilibria. Indeed, any statistical measure con- 
tains a volume element of phase-space. This volume element is defined by symplectic 
structure which is, generally speaking, different for different orbits, i.e. flows with 
different topologies. Therefore, statistical measures are different for different orbits 
and on these grounds we do not expect universality in statistical equilibria (if of course 
they do exist) for flows with topologically different initial data. Moreover, if the 
standard argument [4] that a turbulent cascade is directed towards (inviscid) thermody- 
namical equilibrium is true we do not expect universality there as well. 

Consider now 2~ ideal MHD. The equations of motion written in terms of vorticity 
and magnetic potential a(x ,  y )  are: 

( 1 1 )  & + J ( o ,  $) -J(Aa,  a )  = O  a + J(a,  I)) = 0. 
The Hamiltonian is an energy functional: 

H = - i j s ( w $ + a A a ) d x d y  (12) 

and a Poisson structure follows from the known (see [SI) relation between (11) and 
a semi-direct product of sdiff 9 and algebra of smooth functions F(9). An infinitesimal 
co-adjoint action analogous to (5) may he deduced from this fact: 

So =J( ,y ,  o)+J(u, a )  Sa = J(x,  a )  (13) 
where x and U are arbitrary smooth functions. This is enough to built a Kirillov bracket 
and, hence, a Poisson structure: 

M o ,  01, B [ w ,  all 
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Again, an infinite number of Casimirs invariant under the transformation (13) and 
annihilating identically the Poisson bracket are present: 

[ F ( a ) + w G ( a ) ]  dx dy=constant (15) I, I , ,  = 

where F and G are arbitrary functions of magnetic potential. 
However the realization of the symmetry in terms of just coordinate transformations 

is now impossible and a global version of (13) is not obvious. To find it we shall use 
another realization of the underlying symmetry. The latter is most easilygiven in terms 
of an auxiliary complex function f(x,  y )  which transforms as 

f(x, y )  + e'"@.Y) f (X(x ,  Y ) ,  Y ) )  J(X, U) = 1 (16) 

where the function A ( x , y )  may be arbitrary. It is easy to check that generators of 
phase transformations and infinitesimal diffeomorphisms in this representation obey 
the same structure relations as generators of transformations (13). Equation (16) gives 
a fundamental representation ofthe symmetrygroup and the momentum map procedure 
(for a discussion of this subject within the present context see [6]) which allows us to 
get a co-adjoint representation from another (complex) representation and its conjugate 
may be used to get a following aiisatz for w and a:  

w =iJ(f*,f)a  =f*j (17) 

It may be easily seen that under the infinitesimal version of (16) vorticity and magnetic 
potential transform according to (13) and we immediately get the global version of 
the latter from (16), (17): 

U +  ~ X ( X , Y ) ,  y(x, y))-J(A(x, Y ) .  a (x (x ,  Y), Y ( ~ , Y ) ) )  

a + a ( x ( x , y ) ,  Y(x,Y)) 
(18) 

From now on we may forget about variablesf* andJ However it is worth mentioning 
that they provide Clebsch-like variables for ZD MHD and as usual (cf [6]) the Poisson 
bracket (14) may be recovered from the following canonical brackets for f and f*: 

J(X, Y) = I .  

{f*(x, y),f(x', y ' ) } =  iS(x-x')S(y-y') 

Wx,  y ) , f ( x ' ,  Y ' ) }  = 0. 
(19) 

The fact of positive-definiteness of a following from (17) poses no limitations since 
magnetic potential is defined up to an arbitrary constant. As often happens (see [61) 
the ansatz (17) automatically selects a special kind of a co-adjoint orbit. Indeed the 
second term in the integrand in (15) vanishes identically in this case which means that 
'a half' of possible integrals of motion are identically zero. 

As to the structure of the phase-space, we again have a foliation of the original 
space of a and w into co-adjoint orbits defined by their representatives a,, w o .  For 
any point on the orbit we have: 

(20) 
W(X, y )  = w d X ( x ,  Y), Y(x, y ) ) - W ( x ,  Y). a o ( X ( x ,  Y). Y ~ Y ) ) )  

a(x,.Y)=ao(X(x,Y), Y(X,Y)) J(X, Y ) = l .  

It is clear from this equation that a singular orbit with wo=O corresponds to the 
situation described by Clebsch-like variables. 
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The genuine Hamiltonian variables are the function A ( x , y )  and parameters of 
symplectic diffeomorphisms, modulo those leaving a, invariant. The conclusions about 
tentative thermodynamical equilibria hold on the same footing as in the case of pure HD. 

So in the same way as canonical variables are coordinates of a phase-space in the 
standard Hamiltonian picture, the parameters of symplectic diffeomorphisms in 2~ HD 
or those plus extra phase function in ZD MHD are the coordinates of a phase-space for 
these two systems. The crucial difference, however, is that now the phase-space is a 
curved (infinite-dimensional) manifold. It is geometry of such a manifold which plays 
the main role and which deserves further study. 
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